(3x+25)(3x+85)+4x=360

Simple and best practice solution for (3x+25)(3x+85)+4x=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+25)(3x+85)+4x=360 equation:



(3x+25)(3x+85)+4x=360
We move all terms to the left:
(3x+25)(3x+85)+4x-(360)=0
We add all the numbers together, and all the variables
4x+(3x+25)(3x+85)-360=0
We multiply parentheses ..
(+9x^2+255x+75x+2125)+4x-360=0
We get rid of parentheses
9x^2+255x+75x+4x+2125-360=0
We add all the numbers together, and all the variables
9x^2+334x+1765=0
a = 9; b = 334; c = +1765;
Δ = b2-4ac
Δ = 3342-4·9·1765
Δ = 48016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48016}=\sqrt{16*3001}=\sqrt{16}*\sqrt{3001}=4\sqrt{3001}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(334)-4\sqrt{3001}}{2*9}=\frac{-334-4\sqrt{3001}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(334)+4\sqrt{3001}}{2*9}=\frac{-334+4\sqrt{3001}}{18} $

See similar equations:

| 200x+5000=11000 | | 4+1.1(-8x-9.3)+8.6x=−9 | | 0=a-a | | 0=a-2-a-9 | | 3/4x=1=-1 | | 22x-33=10x+3 | | X=2/2x+12 | | 3x⁵-8x³+2x=0 | | X=10/2x-9 | | -1.2x+7=0.5x-1.5 | | 3(2x-4)=28-4x | | n³=8 | | x2-15=7/8 | | 4(3x+2)-x=74 | | 180=(6x+5)+(7x-4) | | 1.01^x=1.3 | | 36+x=18 | | 5x+7x+96=180 | | a6=8(8)+1 | | 120=4x+40- | | 180=10x+2+9x+18 | | 16=2|2c| | | 24x55= | | 4(x-5)=6+10-2x | | 10t2+t-3=0 | | 97=7-9(9v) | | 4r2-8r+3=0 | | 1/21=3/7v | | 4y-9=15+9 | | f(-1)=6(-1)²-2(-1)+13 | | 9p-18=27p=3;p=5;p=8 | | 2/3(3x+18)=-2 |

Equations solver categories