x2-15=7/8

Simple and best practice solution for x2-15=7/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x2-15=7/8 equation:



x2-15=7/8
We move all terms to the left:
x2-15-(7/8)=0
We add all the numbers together, and all the variables
x2-15-(+7/8)=0
We add all the numbers together, and all the variables
x^2-15-(+7/8)=0
We get rid of parentheses
x^2-15-7/8=0
We multiply all the terms by the denominator
x^2*8-7-15*8=0
We add all the numbers together, and all the variables
x^2*8-127=0
Wy multiply elements
8x^2-127=0
a = 8; b = 0; c = -127;
Δ = b2-4ac
Δ = 02-4·8·(-127)
Δ = 4064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4064}=\sqrt{16*254}=\sqrt{16}*\sqrt{254}=4\sqrt{254}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{254}}{2*8}=\frac{0-4\sqrt{254}}{16} =-\frac{4\sqrt{254}}{16} =-\frac{\sqrt{254}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{254}}{2*8}=\frac{0+4\sqrt{254}}{16} =\frac{4\sqrt{254}}{16} =\frac{\sqrt{254}}{4} $

See similar equations:

| 4(3x+2)-x=74 | | 180=(6x+5)+(7x-4) | | 1.01^x=1.3 | | 36+x=18 | | 5x+7x+96=180 | | a6=8(8)+1 | | 120=4x+40- | | 180=10x+2+9x+18 | | 16=2|2c| | | 24x55= | | 4(x-5)=6+10-2x | | 10t2+t-3=0 | | 97=7-9(9v) | | 4r2-8r+3=0 | | 1/21=3/7v | | 4y-9=15+9 | | f(-1)=6(-1)²-2(-1)+13 | | 9p-18=27p=3;p=5;p=8 | | 2/3(3x+18)=-2 | | 2+3h=18 | | 7x−5=6(x-5) | | G(n)=4n+5 | | 2x+4+x+6=30 | | 4x²+6=106 | | 49x^2-28x-7=0 | | 6x=1/2(4x+8) | | x^2-10x=63 | | -32=x-32 | | 103=-5(5a-6)-2 | | —32=x-32 | | 3(6-x)+17=0 | | x^2-10x+63=0 |

Equations solver categories