If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2+t-3=0
a = 10; b = 1; c = -3;
Δ = b2-4ac
Δ = 12-4·10·(-3)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*10}=\frac{-12}{20} =-3/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*10}=\frac{10}{20} =1/2 $
| 97=7-9(9v) | | 4r2-8r+3=0 | | 1/21=3/7v | | 4y-9=15+9 | | f(-1)=6(-1)²-2(-1)+13 | | 9p-18=27p=3;p=5;p=8 | | 2/3(3x+18)=-2 | | 2+3h=18 | | 7x−5=6(x-5) | | G(n)=4n+5 | | 2x+4+x+6=30 | | 4x²+6=106 | | 49x^2-28x-7=0 | | 6x=1/2(4x+8) | | x^2-10x=63 | | -32=x-32 | | 103=-5(5a-6)-2 | | —32=x-32 | | 3(6-x)+17=0 | | x^2-10x+63=0 | | 7(2+5 | | 3/4x+5=2.5 | | X2ª+8x-12=72 | | 1-(h+10)-10=10-2h | | (k^2)-10k+9=0 | | 2n-13=75 | | 5(2^x)-3=32 | | 5+24x=2*(5x-53) | | 210j²+5j=-5j | | 2v=8v−6 | | (2x-1)³-10=54 | | a²-81=0 |