(3x+1)(x+3)=19-2(x+2)2

Simple and best practice solution for (3x+1)(x+3)=19-2(x+2)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+1)(x+3)=19-2(x+2)2 equation:



(3x+1)(x+3)=19-2(x+2)2
We move all terms to the left:
(3x+1)(x+3)-(19-2(x+2)2)=0
We multiply parentheses ..
(+3x^2+9x+x+3)-(19-2(x+2)2)=0
We calculate terms in parentheses: -(19-2(x+2)2), so:
19-2(x+2)2
determiningTheFunctionDomain -2(x+2)2+19
We multiply parentheses
-4x-8+19
We add all the numbers together, and all the variables
-4x+11
Back to the equation:
-(-4x+11)
We get rid of parentheses
3x^2+9x+x+4x+3-11=0
We add all the numbers together, and all the variables
3x^2+14x-8=0
a = 3; b = 14; c = -8;
Δ = b2-4ac
Δ = 142-4·3·(-8)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{73}}{2*3}=\frac{-14-2\sqrt{73}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{73}}{2*3}=\frac{-14+2\sqrt{73}}{6} $

See similar equations:

| 3x+11=1+x | | 4x-5=6xx1 | | 4x-8=53 | | 4x-5=6x1 | | 3/4x+x=12-1/4x | | 3x-12=12(x-4) | | a2+12a+11=(a+)(a+11) | | 4+n/10=2 | | A2+12a+11=0 | | 3x4=19 | | 5n-16=n+2 | | 3y5=44 | | x-4=-3x-9 | | 4(m2)=17 | | 7+n/6=8 | | a/74=21 | | 5x+54=12x+16 | | 8+2(a=5)=6a-6 | | )11n-9=5n+27 | | 8=2(a=5)=6a-6 | | -5x-2=-102 | | 3(y-3)-1(y-2)=5(y-2)-6(y-2) | | 6(7x+4)=42+24 | | x²+19x+48=0 | | 2p*p+7p+30=0 | | –m=–m+5 | | 3–2(9+2m)=m | | 8n-2=-114 | | 2x(x-2)-51=0 | | 10a=a+7 | | (x/3)=7x/(12x-15) | | 8n-2=-144 |

Equations solver categories