(3/5)*q=1

Simple and best practice solution for (3/5)*q=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/5)*q=1 equation:



(3/5)*q=1
We move all terms to the left:
(3/5)*q-(1)=0
Domain of the equation: 5)*q!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
(+3/5)*q-1=0
We multiply parentheses
3q^2-1=0
a = 3; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·3·(-1)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*3}=\frac{0-2\sqrt{3}}{6} =-\frac{2\sqrt{3}}{6} =-\frac{\sqrt{3}}{3} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*3}=\frac{0+2\sqrt{3}}{6} =\frac{2\sqrt{3}}{6} =\frac{\sqrt{3}}{3} $

See similar equations:

| 3x^2+15-3=0 | | -4/7x+11=-21 | | 4(x+5)+3=-1 | | f(1)=f(1-1)+6 | | 685=2x | | -51/4u+2(3/8u-9)=5/2 | | -4-3x/2=11 | | y+4-2(-8y-1)=2(y-3) | | -12x+20=123 | | 2^x=50,000 | | 3^(4x-6)=35 | | 12+20(10x+5)=59 | | -51/4u+2(3/4u-9)=5/2 | | -3(v+1)=5v-5+5(2v+2) | | 2/3-6y=156/6 | | -22u-8=2u-11 | | (14)/(3)-1(1/2)b=b-(1)/(3) | | 180=(180-4x+8)+51+(2x+3) | | 6x+42=20+9x | | 10w-6=-2w+12 | | 12x-35=-11 | | 3y–9=9-15 | | -2x-4(8x+20)=-12 | | 3y–9=9-15y | | x^2+50x=600 | | 3(2x+14)=20+9x | | 25x-24=51 | | 2x/5-3/5=7 | | 5/8x+9=4 | | -4(x+9)+18=28 | | 4(a-7)=22 | | -2q+8=-q |

Equations solver categories