If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(14)/(3)-1(1/2)b=b-(1)/(3)
We move all terms to the left:
(14)/(3)-1(1/2)b-(b-(1)/(3))=0
Domain of the equation: 2)b!=0We add all the numbers together, and all the variables
b!=0/1
b!=0
b∈R
-1(+1/2)b-(+b-1/3)+14/3=0
We multiply parentheses
-b^2-(+b-1/3)+14/3=0
We get rid of parentheses
-b^2-b+1/3+14/3=0
We multiply all the terms by the denominator
-b^2*3-b*3+1+14=0
We add all the numbers together, and all the variables
-b^2*3-b*3+15=0
Wy multiply elements
-3b^2-3b+15=0
a = -3; b = -3; c = +15;
Δ = b2-4ac
Δ = -32-4·(-3)·15
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{21}}{2*-3}=\frac{3-3\sqrt{21}}{-6} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{21}}{2*-3}=\frac{3+3\sqrt{21}}{-6} $
| 180=(180-4x+8)+51+(2x+3) | | 6x+42=20+9x | | 10w-6=-2w+12 | | 12x-35=-11 | | 3y–9=9-15 | | -2x-4(8x+20)=-12 | | 3y–9=9-15y | | x^2+50x=600 | | 3(2x+14)=20+9x | | 25x-24=51 | | 2x/5-3/5=7 | | 5/8x+9=4 | | -4(x+9)+18=28 | | 4(a-7)=22 | | -2q+8=-q | | 2/3-2/3=n/6+4/3 | | 14/3-11/2b=b-1/3 | | 2(x+4)-5x=-4 | | 55.50+2x=104.50 | | 3x-39+2x+16=180 | | 20-5n÷2=15 | | -8z=-14 | | 5x+4(-6x+2)=-163 | | -3z-5z=-6-8 | | (x-7)/2=5 | | 8/1x=16 | | 2x+100=×+105 | | -5t^2+3t=0 | | 6-2x=3x-2.4 | | 1/7(1x-4)=1/2 | | 2x+4(6x-18)=58 | | 15x-18=-2x-5 |