(3/4x-2)+(2/5x)=90

Simple and best practice solution for (3/4x-2)+(2/5x)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4x-2)+(2/5x)=90 equation:



(3/4x-2)+(2/5x)=90
We move all terms to the left:
(3/4x-2)+(2/5x)-(90)=0
Domain of the equation: 4x-2)!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(3/4x-2)+(+2/5x)-90=0
We get rid of parentheses
3/4x+2/5x-2-90=0
We calculate fractions
15x/20x^2+8x/20x^2-2-90=0
We add all the numbers together, and all the variables
15x/20x^2+8x/20x^2-92=0
We multiply all the terms by the denominator
15x+8x-92*20x^2=0
We add all the numbers together, and all the variables
23x-92*20x^2=0
Wy multiply elements
-1840x^2+23x=0
a = -1840; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·(-1840)·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*-1840}=\frac{-46}{-3680} =1/80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*-1840}=\frac{0}{-3680} =0 $

See similar equations:

| (3x)^2-6x+9=0 | | 37-6x=11+7x | | N/8=n+5/10 | | 3x^2=6x−9 | | 8.6=9.2-0.3x | | Y=(2/5x)+90 | | 1.4=0.019((x)x(x)) | | (x)^2-9x+36=0 | | 0.8x+0.2=4 | | -7/5w=28 | | 0.6x+0.4=4 | | -(7/5)w=28 | | 10y^2=18 | | ^2x-5=220 | | 2(x-6)-6(x-2)=x+8-(x-4) | | -4x2+2x-1=0 | | (3/4x-2)+(2/5x)+90=180 | | 6r+3=9 | | -(15/8)=3y | | x^-7=0 | | -7x/8=-49 | | (3/4x-2)+(2/5-x)=90 | | 1.3x2=7.9 | | 10x^=100 | | 5y-5=19y+15 | | .50x+20(9.0-x)=315 | | 4y/13-30/91=y/7 | | 15x2+45x=0 | | 2(a+7)-7=9 | | X+0.08x=110.16 | | (2/5x+90)+(3x-2)=180 | | 11x2-121x=0 |

Equations solver categories