(3/4)r-1+(1/2)r=11

Simple and best practice solution for (3/4)r-1+(1/2)r=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)r-1+(1/2)r=11 equation:



(3/4)r-1+(1/2)r=11
We move all terms to the left:
(3/4)r-1+(1/2)r-(11)=0
Domain of the equation: 4)r!=0
r!=0/1
r!=0
r∈R
Domain of the equation: 2)r!=0
r!=0/1
r!=0
r∈R
We add all the numbers together, and all the variables
(+3/4)r+(+1/2)r-1-11=0
We add all the numbers together, and all the variables
(+3/4)r+(+1/2)r-12=0
We multiply parentheses
3r^2+r^2-12=0
We add all the numbers together, and all the variables
4r^2-12=0
a = 4; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·4·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*4}=\frac{0-8\sqrt{3}}{8} =-\frac{8\sqrt{3}}{8} =-\sqrt{3} $
$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*4}=\frac{0+8\sqrt{3}}{8} =\frac{8\sqrt{3}}{8} =\sqrt{3} $

See similar equations:

| 3400*t+600=21000 | | 11x+1=15x-3 | | 16b-7b-6b+2b+4b=18 | | 5(x-3)=2x-21 | | 2+x=3+x | | 4y2+24y-64=0 | | 10d+11d+-6d=15d | | -3c-18=27 | | 0=5/9(9/5(f-32)+32) | | 3=10n+12 | | -1-2(-9z-8)=3(z+6)-9 | | x+146=x+42 | | -83=-5x-(5+8x) | | 2x^2+3x−1/2=0 | | -1-2(-9z-8)=3(z=6)-9 | | 6(y+3)-2y=2(2y+1) | | 8y^2=2 | | 6(2y+y)=3(3-y) | | −1−2(−9z−8)=3(3z+6)−9 | | 5p-89=2p+12 | | 3k-2=2(-k-2) | | 3c+4(-4/7)=5 | | -1-2(-9z-8)=3(3z+6)−9 | | 18x=44x-6 | | 44x-6=18x | | x^2-2x=3x+6 | | 9x-16-5x=-4 | | 2434.3=r181/3 | | x^2x=3x+6 | | 9x+16=5x+32 | | 2(5x-7)=-84 | | 3|4x-4|-3=11 |

Equations solver categories