If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/4)(4x+80)=90
We move all terms to the left:
(3/4)(4x+80)-(90)=0
Domain of the equation: 4)(4x+80)!=0We add all the numbers together, and all the variables
x∈R
(+3/4)(4x+80)-90=0
We multiply parentheses ..
(+12x^2+3/4*80)-90=0
We multiply all the terms by the denominator
(+12x^2+3-90*4*80)=0
We get rid of parentheses
12x^2+3-90*4*80=0
We add all the numbers together, and all the variables
12x^2-28797=0
a = 12; b = 0; c = -28797;
Δ = b2-4ac
Δ = 02-4·12·(-28797)
Δ = 1382256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1382256}=\sqrt{144*9599}=\sqrt{144}*\sqrt{9599}=12\sqrt{9599}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{9599}}{2*12}=\frac{0-12\sqrt{9599}}{24} =-\frac{12\sqrt{9599}}{24} =-\frac{\sqrt{9599}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{9599}}{2*12}=\frac{0+12\sqrt{9599}}{24} =\frac{12\sqrt{9599}}{24} =\frac{\sqrt{9599}}{2} $
| 36+3b+30=180 | | x2-4x+18=0 | | 36x+21=36x-1 | | 36+3b+20=180 | | 3÷4(4x+80)=90 | | K-k+3k-3k+4k=16 | | (2x+1)/3=(4x-11)/5 | | 4(m+8)=104 | | 6(-6-4v)=84 | | -y+214=52 | | 8(0)=4n | | 2-7p=-1-8p | | 14x+16=19x+15 | | 15s+15s+120=180 | | 5x=3x+2x+x | | 5(x+4)-2(x-1)=12 | | 2w+12=220 | | -(2x-4)=6 | | Z=8x+6x | | M5x=3x+2x+x | | 172=-y+96 | | 5(x-2.5)=-10.4 | | 19-8+4w=51 | | 5y+8/2=2+1/2y | | -14u-10u-3u=7 | | 6x-17=-25 | | 3(x-1)/5=3(x-2)/8 | | 7h+1h-8h+5h=10 | | 12x+6=12x-9 | | 6+7x+125=180 | | 20x-4=20x+20 | | 9m-3=78 |