5y+8/2=2+1/2y

Simple and best practice solution for 5y+8/2=2+1/2y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y+8/2=2+1/2y equation:



5y+8/2=2+1/2y
We move all terms to the left:
5y+8/2-(2+1/2y)=0
Domain of the equation: 2y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
5y-(1/2y+2)+8/2=0
We add all the numbers together, and all the variables
5y-(1/2y+2)+4=0
We get rid of parentheses
5y-1/2y-2+4=0
We multiply all the terms by the denominator
5y*2y-2*2y+4*2y-1=0
Wy multiply elements
10y^2-4y+8y-1=0
We add all the numbers together, and all the variables
10y^2+4y-1=0
a = 10; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·10·(-1)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{14}}{2*10}=\frac{-4-2\sqrt{14}}{20} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{14}}{2*10}=\frac{-4+2\sqrt{14}}{20} $

See similar equations:

| -14u-10u-3u=7 | | 6x-17=-25 | | 3(x-1)/5=3(x-2)/8 | | 7h+1h-8h+5h=10 | | 12x+6=12x-9 | | 6+7x+125=180 | | 20x-4=20x+20 | | 9m-3=78 | | 202=113-u | | 2x+2=-x+10 | | 6+7x=125 | | 6(z-9)=4(z-5) | | 15=1x+6 | | X+(3x-1)+(2x+1)=4(1/2x+3) | | 5+|2x-1|=8 | | 3s+9s+-14s-12s=20 | | 40.77=y/5 | | 8x+2x+18=12+x | | 32/56=14/x | | x−6=4 | | 3z-19=14+z | | 4.9t-20+12=0 | | -9n=12 | | 4x-12=4(x-3 | | 5/2x+x-5+x=67 | | 5+I2x-1I=8 | | -2x/2+5=17 | | 16n-6=4n+2 | | -10-6p=-8p | | 8+4k=k-4(-5k-2) | | 2x+3+8x-4=13x-10 | | -4x-7x=13+x-4-3x |

Equations solver categories