(3/2)+(1/7)x=2

Simple and best practice solution for (3/2)+(1/7)x=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)+(1/7)x=2 equation:



(3/2)+(1/7)x=2
We move all terms to the left:
(3/2)+(1/7)x-(2)=0
Domain of the equation: 7)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (1/7)x-2+(3/2)=0
We add all the numbers together, and all the variables
(+1/7)x-2+(+3/2)=0
We multiply parentheses
x^2-2+(+3/2)=0
We get rid of parentheses
x^2-2+3/2=0
We multiply all the terms by the denominator
x^2*2+3-2*2=0
We add all the numbers together, and all the variables
x^2*2-1=0
Wy multiply elements
2x^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| 13=8y+4 | | (6^x)/4=54 | | m•9+5=-8 | | (3/2)+(1/7)x=29 | | 3x-16x+24=-12x-30 | | 3/2+1/7x=2 | | 4b^2+7b+7=0 | | -8k-6=-70 | | 4(4y+2)=2(11+6y)+8 | | p/3-7=-16 | | 9x+5=23x+7 | | 9j+6=-57 | | 6(x-2)+10=-4-10 | | -6g-11=19 | | 11/8*1011/22=y | | 14+38+x+10=89 | | d/5-4=9 | | 6c+10=-44 | | 47=5×t+2 | | 47=5×t2+2 | | 9^t=12 | | 8b-12=12b-7 | | 6z+28=9z-2 | | 0.5(7d+4)=-1.5d7 | | 27=4x+40 | | (5x+2)(3x+5)(8x+8)(5x+10)(4x+15)=580 | | 27=4x+40÷2 | | 2x-31=-15 | | p^2-29=-4 | | 27=4(x+10)÷2 | | y+11/8y+y+11/8y=190 | | x+(16/6)=(1/3)x |

Equations solver categories