y+11/8y+y+11/8y=190

Simple and best practice solution for y+11/8y+y+11/8y=190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y+11/8y+y+11/8y=190 equation:



y+11/8y+y+11/8y=190
We move all terms to the left:
y+11/8y+y+11/8y-(190)=0
Domain of the equation: 8y!=0
y!=0/8
y!=0
y∈R
We add all the numbers together, and all the variables
2y+11/8y+11/8y-190=0
We multiply all the terms by the denominator
2y*8y-190*8y+11+11=0
We add all the numbers together, and all the variables
2y*8y-190*8y+22=0
Wy multiply elements
16y^2-1520y+22=0
a = 16; b = -1520; c = +22;
Δ = b2-4ac
Δ = -15202-4·16·22
Δ = 2308992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2308992}=\sqrt{64*36078}=\sqrt{64}*\sqrt{36078}=8\sqrt{36078}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1520)-8\sqrt{36078}}{2*16}=\frac{1520-8\sqrt{36078}}{32} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1520)+8\sqrt{36078}}{2*16}=\frac{1520+8\sqrt{36078}}{32} $

See similar equations:

| x+(16/6)=(1/3)x | | 3k+5=5-8k | | 3=3/5x-6 | | (8x-89)+(13x-4)=180 | | 2n=-4n+6n | | (r-6)(r-4)=0 | | 5z-3/2+3z=6z-5/6+4 | | 26=x/8+2 | | 5+3(c-4)=2(c+1) | | |6y−7|=6 | | 74y-8-78y=-4-8y | | 9(2-x)=8(x-3)+× | | -2x+9x-107=89 | | 8x+2x-83=57 | | 2x-91+5x=84 | | (5-3x)-(-4x+6)=8(x+11)-(3x-6) | | 5u2-20=0 | | 4x=(2x+7)+28 | | 7p-2+6p=-15 | | 8(5/2)=3x | | (3y/11)-(7/66)=y/6 | | 8310=0.25(x-14600)+1460 | | Y(2)+y=306 | | 16(c)^2=196 | | 50=3(s+16-2(s-2) | | -2-2f=-2 | | Y^2+y=360 | | 7(4x+8)=6-(x+3) | | 2y+y=306 | | 6-3/x=6 | | -4z^2+3z=1 | | 175-6x=8x |

Equations solver categories