(3+1/2)-(1+1/3)*x=1

Simple and best practice solution for (3+1/2)-(1+1/3)*x=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3+1/2)-(1+1/3)*x=1 equation:



(3+1/2)-(1+1/3)*x=1
We move all terms to the left:
(3+1/2)-(1+1/3)*x-(1)=0
Domain of the equation: 3)*x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain -(1+1/3)*x-1+(3+1/2)=0
We add all the numbers together, and all the variables
-(1/3+1)*x-1+(1/2+3)=0
We multiply parentheses
-x^2-x-1+(1/2+3)=0
We get rid of parentheses
-x^2-x-1+3+1/2=0
We multiply all the terms by the denominator
-x^2*2-x*2+1-1*2+3*2=0
We add all the numbers together, and all the variables
-x^2*2-x*2+5=0
Wy multiply elements
-2x^2-2x+5=0
a = -2; b = -2; c = +5;
Δ = b2-4ac
Δ = -22-4·(-2)·5
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{11}}{2*-2}=\frac{2-2\sqrt{11}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{11}}{2*-2}=\frac{2+2\sqrt{11}}{-4} $

See similar equations:

| 8=-2(5v+3)+2(1+2v) | | -7=z+-13 | | 11-a=-4 | | 1=-11-11x+10 | | -22=-7w+3(w-2) | | 6(4w+6)=204 | | 8x+4=2(4x-4 | | y9=−8 | | -238=14j | | -7v+3=129 | | y=(6+3)/10 | | .4m=6 | | 15c+4=9c | | 6(5-8p)=117+9 | | -16m=144 | | 13(4-2h)=-30 | | 1=z-12 | | 10=9-a | | 11=-2j-3 | | 8x=28/5 | | 3j–7=2 | | 1.1x1.1=1.21 | | 2(z+1)=5(z-2) | | 66=-1.2(s+3 | | (3x+17)+7x-1=10x+18 | | 7f+16=-8f-14 | | |x-2|=2x+1 | | 8p+-11=2p+7 | | 4x+24=18x+17 | | 3b-8=24-bb= | | 2(2z+3)+1(3z-4)=3(z-2) | | (1)3(5x-2)+4=18 |

Equations solver categories