(3)/(y)-(1)/(12)=(7)/(4y)

Simple and best practice solution for (3)/(y)-(1)/(12)=(7)/(4y) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3)/(y)-(1)/(12)=(7)/(4y) equation:



(3)/(y)-(1)/(12)=(7)/(4y)
We move all terms to the left:
(3)/(y)-(1)/(12)-((7)/(4y))=0
Domain of the equation: y!=0
y∈R
Domain of the equation: 4y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
3/y-(+7/4y)-1/12=0
We get rid of parentheses
3/y-7/4y-1/12=0
We calculate fractions
(-16y^2)/48y^2+144y/48y^2+(-84y)/48y^2=0
We multiply all the terms by the denominator
(-16y^2)+144y+(-84y)=0
We get rid of parentheses
-16y^2+144y-84y=0
We add all the numbers together, and all the variables
-16y^2+60y=0
a = -16; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·(-16)·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3600}=60$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*-16}=\frac{-120}{-32} =3+3/4 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*-16}=\frac{0}{-32} =0 $

See similar equations:

| 27=a0.8 | | (2x+6)*(4x-3)=500 | | 0.13-0.01(x+1)=-0.023(3-x) | | 3(9-b)-42=27b-5(3+6b) | | 2.7÷b=54 | | (2x+6)*(4x-3)=0 | | 4x-2/3=30 | | 5/7y-12=8 | | 3z+2(6z-9)=57 | | x/4+10=-4 | | -6x=-15-11x | | 1.6x=1.5 | | 1.3=x/5-10 | | -2.7x=-51.3 | | 3/4y+3=24 | | -3g+1.9=-11.1 | | 4.5x=-171 | | 5(6+3b)=105 | | 9-2x=18+7 | | 1.3=x-50/5 | | x-11.893=4.98 | | 8​(x+1)=6-​2(8+7​) | | (3x-2)=(7x+8) | | f+3.9=5.1 | | 9x^2+10x-5=6x+11 | | 3x−2=5 | | -1.5+1.8+3x=-1.5+1.8+3(1.3) | | 5x-24+24=96+24 | | 64/24=19/b | | 3.7k÷3=21 | | 7x-1+6x=2x+4-4x | | 5-15+6=9+x-3 |

Equations solver categories