(3)/(8)c-2=(2)/(3)c-12

Simple and best practice solution for (3)/(8)c-2=(2)/(3)c-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3)/(8)c-2=(2)/(3)c-12 equation:



(3)/(8)c-2=(2)/(3)c-12
We move all terms to the left:
(3)/(8)c-2-((2)/(3)c-12)=0
Domain of the equation: 8c!=0
c!=0/8
c!=0
c∈R
Domain of the equation: 3c-12)!=0
c∈R
We get rid of parentheses
3/8c-2/3c+12-2=0
We calculate fractions
9c/24c^2+(-16c)/24c^2+12-2=0
We add all the numbers together, and all the variables
9c/24c^2+(-16c)/24c^2+10=0
We multiply all the terms by the denominator
9c+(-16c)+10*24c^2=0
Wy multiply elements
240c^2+9c+(-16c)=0
We get rid of parentheses
240c^2+9c-16c=0
We add all the numbers together, and all the variables
240c^2-7c=0
a = 240; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·240·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*240}=\frac{0}{480} =0 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*240}=\frac{14}{480} =7/240 $

See similar equations:

| 4(v+1)=-7v-29 | | 3(10-2x)+54=4 | | q2-196=0 | | 2(x+3)^2+1=-47 | | 5(x+1)=2(2x-7) | | 2.x=0 | | 5x+2-18=4+20x | | -92=8(7/3n-8) | | 2+1+2x+2x=32 | | x62+1=0 | | n/n+1=3/1 | | 12+4r=r | | 8x+4=10x2+5x | | 23y−5=15 | | y/3-16=9 | | 3x+7x-1x=1800 | | 17y-19=21y-47 | | 4n-(-2)=10 | | 3x+15=3(x-15) | | 6x-5=-3x+11 | | |4x+3|=|3x–7| | | 27n=-5 | | |3x–1|=6x | | 30+4x-6=180 | | -2{x-2}=3-2x | | 5x+3+2x=15+4x-6 | | 6x^+11x-255=0 | | 21x+60+x^2+20=180 | | k+1=−27. | | 81+5x+9=180 | | -4x–9=–5–6x | | 21−8y=4(−2y+5) |

Equations solver categories