If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2-196=0
We add all the numbers together, and all the variables
q^2-196=0
a = 1; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·1·(-196)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*1}=\frac{-28}{2} =-14 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*1}=\frac{28}{2} =14 $
| 2(x+3)^2+1=-47 | | 5(x+1)=2(2x-7) | | 2.x=0 | | 5x+2-18=4+20x | | -92=8(7/3n-8) | | 2+1+2x+2x=32 | | x62+1=0 | | n/n+1=3/1 | | 12+4r=r | | 8x+4=10x2+5x | | 23y−5=15 | | y/3-16=9 | | 3x+7x-1x=1800 | | 17y-19=21y-47 | | 4n-(-2)=10 | | 3x+15=3(x-15) | | 6x-5=-3x+11 | | |4x+3|=|3x–7| | | 27n=-5 | | |3x–1|=6x | | 30+4x-6=180 | | -2{x-2}=3-2x | | 5x+3+2x=15+4x-6 | | 6x^+11x-255=0 | | 21x+60+x^2+20=180 | | k+1=−27. | | 81+5x+9=180 | | -4x–9=–5–6x | | 21−8y=4(−2y+5) | | |8x+32|=64 | | 10u=20u+5u | | y=0.75(17)+3 |