(2y-1)(y-1)=(y-3)(y+13)

Simple and best practice solution for (2y-1)(y-1)=(y-3)(y+13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2y-1)(y-1)=(y-3)(y+13) equation:



(2y-1)(y-1)=(y-3)(y+13)
We move all terms to the left:
(2y-1)(y-1)-((y-3)(y+13))=0
We multiply parentheses ..
(+2y^2-2y-1y+1)-((y-3)(y+13))=0
We calculate terms in parentheses: -((y-3)(y+13)), so:
(y-3)(y+13)
We multiply parentheses ..
(+y^2+13y-3y-39)
We get rid of parentheses
y^2+13y-3y-39
We add all the numbers together, and all the variables
y^2+10y-39
Back to the equation:
-(y^2+10y-39)
We get rid of parentheses
2y^2-y^2-2y-1y-10y+1+39=0
We add all the numbers together, and all the variables
y^2-13y+40=0
a = 1; b = -13; c = +40;
Δ = b2-4ac
Δ = -132-4·1·40
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3}{2*1}=\frac{10}{2} =5 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3}{2*1}=\frac{16}{2} =8 $

See similar equations:

| X+3=3-3y | | 8x+7-3x=22 | | x+(x+85)+(x-10)=180 | | -12+x/6=-29 | | 1/4(b+7)=8 | | (3t-2)(t+5)=(t-3)(t-4) | | x=5=-3x-9 | | 4g-4=20 | | -3=3-3t | | 16m2+8m=0 | | 3+y/2=11 | | 9(p+3)=81 | | 5(3(x-4)-2(1-x))-x-15=14x+45 | | 3(p+3)=81 | | 16+18=-22y-4 | | x+(3x)+(6x-13)=180 | | 21x+1=18x+23 | | 6x-7(4x)=20 | | 180=(6x-13)+(3x)+x | | y/14=28 | | m+4=-12* | | (x-3)/9=7 | | -45=6x-15 | | 21=9+x/4 | | -7(-3n+3)=-21+21 | | X2=6x+72 | | 5x+3x+2x+1=11 | | (x/4)=-1 | | 3(h-6)=2(-2h+5) | | 12xx9=3(3-4x) | | –26=–1+r | | 2x-5x-5=3x+1* |

Equations solver categories