(3t-2)(t+5)=(t-3)(t-4)

Simple and best practice solution for (3t-2)(t+5)=(t-3)(t-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3t-2)(t+5)=(t-3)(t-4) equation:



(3t-2)(t+5)=(t-3)(t-4)
We move all terms to the left:
(3t-2)(t+5)-((t-3)(t-4))=0
We multiply parentheses ..
(+3t^2+15t-2t-10)-((t-3)(t-4))=0
We calculate terms in parentheses: -((t-3)(t-4)), so:
(t-3)(t-4)
We multiply parentheses ..
(+t^2-4t-3t+12)
We get rid of parentheses
t^2-4t-3t+12
We add all the numbers together, and all the variables
t^2-7t+12
Back to the equation:
-(t^2-7t+12)
We get rid of parentheses
3t^2-t^2+15t-2t+7t-10-12=0
We add all the numbers together, and all the variables
2t^2+20t-22=0
a = 2; b = 20; c = -22;
Δ = b2-4ac
Δ = 202-4·2·(-22)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-24}{2*2}=\frac{-44}{4} =-11 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+24}{2*2}=\frac{4}{4} =1 $

See similar equations:

| x=5=-3x-9 | | 4g-4=20 | | -3=3-3t | | 16m2+8m=0 | | 3+y/2=11 | | 9(p+3)=81 | | 5(3(x-4)-2(1-x))-x-15=14x+45 | | 3(p+3)=81 | | 16+18=-22y-4 | | x+(3x)+(6x-13)=180 | | 21x+1=18x+23 | | 6x-7(4x)=20 | | 180=(6x-13)+(3x)+x | | y/14=28 | | m+4=-12* | | (x-3)/9=7 | | -45=6x-15 | | 21=9+x/4 | | -7(-3n+3)=-21+21 | | X2=6x+72 | | 5x+3x+2x+1=11 | | (x/4)=-1 | | 3(h-6)=2(-2h+5) | | 12xx9=3(3-4x) | | –26=–1+r | | 2x-5x-5=3x+1* | | 5x-3x+4x=36 | | 3y=109 | | 5+x/3-2=10 | | -x=2=3x | | 12X-14(8x)=86 | | M−6(n+1)=42 |

Equations solver categories