(2x-5)(x-4)-(2x-5)(6x+1)=0

Simple and best practice solution for (2x-5)(x-4)-(2x-5)(6x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5)(x-4)-(2x-5)(6x+1)=0 equation:



(2x-5)(x-4)-(2x-5)(6x+1)=0
We multiply parentheses ..
(+2x^2-8x-5x+20)-(2x-5)(6x+1)=0
We get rid of parentheses
2x^2-8x-5x-(2x-5)(6x+1)+20=0
We multiply parentheses ..
2x^2-(+12x^2+2x-30x-5)-8x-5x+20=0
We add all the numbers together, and all the variables
2x^2-(+12x^2+2x-30x-5)-13x+20=0
We get rid of parentheses
2x^2-12x^2-2x+30x-13x+5+20=0
We add all the numbers together, and all the variables
-10x^2+15x+25=0
a = -10; b = 15; c = +25;
Δ = b2-4ac
Δ = 152-4·(-10)·25
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1225}=35$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-35}{2*-10}=\frac{-50}{-20} =2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+35}{2*-10}=\frac{20}{-20} =-1 $

See similar equations:

| 9/2k-3=4/k=+1 | | -13=b+6 | | 8=5x+10 | | N-247=605-(4x28) | | -12=-6+v | | 11x-5+12x=110 | | 4x=5.8 | | 2^4x-7=2^2x+1 | | -y/2=2 | | 15=18+b | | -25+r=-5(2+8r)+6r | | -2y+36=0 | | 6(3+7x)=312 | | 2/3.25=x/6.52(6.5)=3.25(X)13=3.25X | | 6(4-n)=-16+2n | | w=2w-56 | | 4x/2x=10 | | 7x/4+5/3=1/4 | | 2(n+5)=3n+4+n | | -6(-1-7x)=342 | | 10=b+2-3b | | 2a+24+2a+25=30 | | 3/4(x+1)=12 | | 2a+24=1/2(30) | | 17x^2-7x-3=0 | | x=-2+9/13 | | -(6x-4)=2(-8x-4)+22 | | 5x-1=7x-45 | | 4(6x+1)=244 | | 2a+24=15 | | 26x+21=-39-10 | | d/6-3=-1 |

Equations solver categories