9/2k-3=4/k=+1

Simple and best practice solution for 9/2k-3=4/k=+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/2k-3=4/k=+1 equation:



9/2k-3=4/k=+1
We move all terms to the left:
9/2k-3-(4/k)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
9/2k-(+4/k)-3=0
We get rid of parentheses
9/2k-4/k-3=0
We calculate fractions
9k/2k^2+(-8k)/2k^2-3=0
We multiply all the terms by the denominator
9k+(-8k)-3*2k^2=0
Wy multiply elements
-6k^2+9k+(-8k)=0
We get rid of parentheses
-6k^2+9k-8k=0
We add all the numbers together, and all the variables
-6k^2+k=0
a = -6; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-6)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-6}=\frac{-2}{-12} =1/6 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-6}=\frac{0}{-12} =0 $

See similar equations:

| -13=b+6 | | 8=5x+10 | | N-247=605-(4x28) | | -12=-6+v | | 11x-5+12x=110 | | 4x=5.8 | | 2^4x-7=2^2x+1 | | -y/2=2 | | 15=18+b | | -25+r=-5(2+8r)+6r | | -2y+36=0 | | 6(3+7x)=312 | | 2/3.25=x/6.52(6.5)=3.25(X)13=3.25X | | 6(4-n)=-16+2n | | w=2w-56 | | 4x/2x=10 | | 7x/4+5/3=1/4 | | 2(n+5)=3n+4+n | | -6(-1-7x)=342 | | 10=b+2-3b | | 2a+24+2a+25=30 | | 3/4(x+1)=12 | | 2a+24=1/2(30) | | 17x^2-7x-3=0 | | x=-2+9/13 | | -(6x-4)=2(-8x-4)+22 | | 5x-1=7x-45 | | 4(6x+1)=244 | | 2a+24=15 | | 26x+21=-39-10 | | d/6-3=-1 | | 2a+24=14 |

Equations solver categories