(2x-3)(x+5)-(x-2)(2+1)=3

Simple and best practice solution for (2x-3)(x+5)-(x-2)(2+1)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x+5)-(x-2)(2+1)=3 equation:



(2x-3)(x+5)-(x-2)(2+1)=3
We move all terms to the left:
(2x-3)(x+5)-(x-2)(2+1)-(3)=0
We add all the numbers together, and all the variables
(2x-3)(x+5)-(x-2)3-3=0
We multiply parentheses
(2x-3)(x+5)-3x+6-3=0
We multiply parentheses ..
(+2x^2+10x-3x-15)-3x+6-3=0
We add all the numbers together, and all the variables
(+2x^2+10x-3x-15)-3x+3=0
We get rid of parentheses
2x^2+10x-3x-3x-15+3=0
We add all the numbers together, and all the variables
2x^2+4x-12=0
a = 2; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·2·(-12)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{7}}{2*2}=\frac{-4-4\sqrt{7}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{7}}{2*2}=\frac{-4+4\sqrt{7}}{4} $

See similar equations:

| x+10=9+10 | | 10x²-60x+80=0 | | a-10+3a-20+4a-10=180 | | 2h-6=7h+19 | | 2/3x-9=-24 | | 2/3x-9=24 | | 11+3y=32 | | q/2+2=8 | | 2a*a+12a=3a*a | | d/10+1020+d/6=1140 | | –2x2+3x–2=x+3 | | 2(f-6)=30 | | 2y+11=3y+1 | | (7/2)/y=-5 | | 10z​ −36=26−3z​ | | 9y−4=2y+31 | | 5x^2+6x-18=0 | | 3p2-10p-8=0 | | m-m-1+m-2=1 | | 600=v*1 | | 4y2+14y=0 | | 5x+6=12(x=2) | | 3x/2x+9/2x=14 | | x2-2x-3≥0=0 | | X2-3x-58=0 | | X2-3x-28-30=0 | | 9x–7≤38=45≤38 | | V={2x+1|x∈Z,0≤x≤9} | | 3(x+7)=23 | | 2^n=268 | | 5(10x)=3x-7 | | 1250=150*t |

Equations solver categories