If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+14y=0
a = 4; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·4·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*4}=\frac{-28}{8} =-3+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*4}=\frac{0}{8} =0 $
| 5x+6=12(x=2) | | 3x/2x+9/2x=14 | | x2-2x-3≥0=0 | | X2-3x-58=0 | | X2-3x-28-30=0 | | 9x–7≤38=45≤38 | | V={2x+1|x∈Z,0≤x≤9} | | 3(x+7)=23 | | 2^n=268 | | 5(10x)=3x-7 | | 1250=150*t | | 5x-2/2x=4 | | x-6.3=-2.1 | | 47-y=23+y | | 8y+3y+4y=0 | | 3p-4=2p+6 | | d=40*2 | | 9y+18=54 | | x-1/2=90 | | 6x-16-6x=x-6x | | 8x-4=6×+8 | | 4(-2f-6)=0 | | 3(3+2j)=0 | | (-5+v)2=0 | | 4(r+4)=0 | | -6(-2-2m)=0 | | -6((-2)-2m)=0 | | -2(5+3q)=0 | | 3(2g+3)=0 | | (-f+4)2=0 | | -6(3+9k)=0 | | -4(v-4)=0 |