(2x-100)+(x-20)+(1/4x+40)=180

Simple and best practice solution for (2x-100)+(x-20)+(1/4x+40)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-100)+(x-20)+(1/4x+40)=180 equation:



(2x-100)+(x-20)+(1/4x+40)=180
We move all terms to the left:
(2x-100)+(x-20)+(1/4x+40)-(180)=0
Domain of the equation: 4x+40)!=0
x∈R
We get rid of parentheses
2x+x+1/4x-100-20+40-180=0
We multiply all the terms by the denominator
2x*4x+x*4x-100*4x-20*4x+40*4x-180*4x+1=0
Wy multiply elements
8x^2+4x^2-400x-80x+160x-720x+1=0
We add all the numbers together, and all the variables
12x^2-1040x+1=0
a = 12; b = -1040; c = +1;
Δ = b2-4ac
Δ = -10402-4·12·1
Δ = 1081552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1081552}=\sqrt{16*67597}=\sqrt{16}*\sqrt{67597}=4\sqrt{67597}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1040)-4\sqrt{67597}}{2*12}=\frac{1040-4\sqrt{67597}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1040)+4\sqrt{67597}}{2*12}=\frac{1040+4\sqrt{67597}}{24} $

See similar equations:

| 2x+160,850-160,850=312,750-160,850 | | 8u-62=9u-73 | | 16=60+11r | | 3x=2x=5 | | n^2+5n+18=73630940=n=10000 | | 2x+160,850=312,750 | | 15-4c=7 | | (x-3)^2+5=41 | | (3x-1)/2=4 | | m=4(2m-3)=-3 | | 4(x-7)+8=6x-2 | | n-(-3)+(-3)=-1+(-3) | | 9y+4.8=14.7 | | 4y=-3y+2 | | 5(5^2x+1)=(1/125)^3x | | 160,850(x)+x=312,750 | | 11(2y-4)=5y+2 | | (4x-84)+(x+24)+(1/2x+42)=180 | | 9(q-89)=18 | | 30y÷2=68 | | 3+1/2=17-3a | | 4=r/2-(-1) | | 5t+11-2t=50 | | 11+4h=-81 | | X+160,850-x=312,750 | | x+24+2x+4+4x+6=180 | | 3q-46=35 | | 14+3(x-8)=20 | | (4x-84)+(x+24)+(1/2x+42=180 | | 7d-13=8 | | 3+1/a=17-3*a | | 4x+7=2x=13 |

Equations solver categories