(4x-84)+(x+24)+(1/2x+42)=180

Simple and best practice solution for (4x-84)+(x+24)+(1/2x+42)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-84)+(x+24)+(1/2x+42)=180 equation:



(4x-84)+(x+24)+(1/2x+42)=180
We move all terms to the left:
(4x-84)+(x+24)+(1/2x+42)-(180)=0
Domain of the equation: 2x+42)!=0
x∈R
We get rid of parentheses
4x+x+1/2x-84+24+42-180=0
We multiply all the terms by the denominator
4x*2x+x*2x-84*2x+24*2x+42*2x-180*2x+1=0
Wy multiply elements
8x^2+2x^2-168x+48x+84x-360x+1=0
We add all the numbers together, and all the variables
10x^2-396x+1=0
a = 10; b = -396; c = +1;
Δ = b2-4ac
Δ = -3962-4·10·1
Δ = 156776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156776}=\sqrt{4*39194}=\sqrt{4}*\sqrt{39194}=2\sqrt{39194}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-2\sqrt{39194}}{2*10}=\frac{396-2\sqrt{39194}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+2\sqrt{39194}}{2*10}=\frac{396+2\sqrt{39194}}{20} $

See similar equations:

| 9(q-89)=18 | | 30y÷2=68 | | 3+1/2=17-3a | | 4=r/2-(-1) | | 5t+11-2t=50 | | 11+4h=-81 | | X+160,850-x=312,750 | | x+24+2x+4+4x+6=180 | | 3q-46=35 | | 14+3(x-8)=20 | | (4x-84)+(x+24)+(1/2x+42=180 | | 7d-13=8 | | 3+1/a=17-3*a | | 4x+7=2x=13 | | 7(p-83)=35 | | 0.35(s+0.34)+0.15s=0.1.66 | | 3|2x-2|=30 | | (2+3i)+(-4+5i)=0 | | a+(-6)=-4 | | 8p+12=60 | | (9x-4)/(9x+4)=4/5 | | 15-2h=5 | | 3q+-5=-2 | | -x-11(x+12)=12(1+x) | | x=45-3 | | (9x+4)/(9x-4)=4/5 | | (2x+5)-(5x-2)=0 | | 6p+2=-20 | | X+2.5=0.8+2.5x | | 4⁄3·n=12 | | 5a-57=57 | | x^2-20x+100=82 |

Equations solver categories