(2x-1)(x-3)=(x-5)(x-1)

Simple and best practice solution for (2x-1)(x-3)=(x-5)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-1)(x-3)=(x-5)(x-1) equation:



(2x-1)(x-3)=(x-5)(x-1)
We move all terms to the left:
(2x-1)(x-3)-((x-5)(x-1))=0
We multiply parentheses ..
(+2x^2-6x-1x+3)-((x-5)(x-1))=0
We calculate terms in parentheses: -((x-5)(x-1)), so:
(x-5)(x-1)
We multiply parentheses ..
(+x^2-1x-5x+5)
We get rid of parentheses
x^2-1x-5x+5
We add all the numbers together, and all the variables
x^2-6x+5
Back to the equation:
-(x^2-6x+5)
We get rid of parentheses
2x^2-x^2-6x-1x+6x+3-5=0
We add all the numbers together, and all the variables
x^2-1x-2=0
a = 1; b = -1; c = -2;
Δ = b2-4ac
Δ = -12-4·1·(-2)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3}{2*1}=\frac{-2}{2} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3}{2*1}=\frac{4}{2} =2 $

See similar equations:

| 3v=4,8 | | x+0.1x=344392 | | 9x-18=6x-9 | | 4y-8=3(y+1) | | 0.3x=93 | | 0.05x=6 | | -9=v+8 | | 40=2m | | v/11=6/11 | | -2+k=-5 | | 20x=-160 | | -7=m/15 | | X+10x^2=21 | | 10x+12=11(x-1) | | x*x*x*(x*0.6)=4.7x/8.87x | | 2.766y/78y=87.6y*2.6y | | 1x=3.4x+5 | | 10x^-19x=-6 | | 51.3x^2-53.3x+13.325=0 | | 10x2-19=-6 | | 8x2=6x-9 | | 9x2-6x=8 | | (1/2)x-6+8x+7-x=0 | | 7x-32=5x+5 | | 9(x+9)=-3(x-5) | | 5x-1500=100+3x | | 1n+130=100n2-70n | | 4x+4+5=6x-6+x | | 130n=100n2-70n | | 100n2+1n=70n | | 100n2-70n=130n | | 100n2=70n2 |

Equations solver categories