If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)(6t+12)=(28)
We move all terms to the left:
(2/3)(6t+12)-((28))=0
Domain of the equation: 3)(6t+12)!=0determiningTheFunctionDomain (2/3)(6t+12)-28=0
t∈R
We add all the numbers together, and all the variables
(+2/3)(6t+12)-28=0
We multiply parentheses ..
(+12t^2+2/3*12)-28=0
We multiply all the terms by the denominator
(+12t^2+2-28*3*12)=0
We get rid of parentheses
12t^2+2-28*3*12=0
We add all the numbers together, and all the variables
12t^2-1006=0
a = 12; b = 0; c = -1006;
Δ = b2-4ac
Δ = 02-4·12·(-1006)
Δ = 48288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48288}=\sqrt{16*3018}=\sqrt{16}*\sqrt{3018}=4\sqrt{3018}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3018}}{2*12}=\frac{0-4\sqrt{3018}}{24} =-\frac{4\sqrt{3018}}{24} =-\frac{\sqrt{3018}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3018}}{2*12}=\frac{0+4\sqrt{3018}}{24} =\frac{4\sqrt{3018}}{24} =\frac{\sqrt{3018}}{6} $
| (2/3)*(6*t+12)=28 | | 16x+2x^2=0 | | x+4x+5x-50+2x-10=360 | | x+2=5-2x | | x-3=14-2x | | m/4+8=33 | | 0.1*(X*X*X)+0.6*x^2-3.2=0 | | 9^x-^2=-81 | | 12m-30=6 | | 4x2=196 | | 9^x-2=-81 | | 7x=9-+6x | | 3(x-21)=x-17 | | 5(x+4)-3(x(2=32 | | 50-2x=x+5 | | 2x-18=x+1 | | (2x+7)(3x−12)=0 | | 7x-9=3x-11 | | 3x=4x-68 | | (2a+1)(a−4)=0 | | (2)^-2x=1/1024 | | 2x*x=28 | | Y=-10/3x+7 | | 2+8x=17x2+8x=17x | | 18x+35x+9=62x | | 100x+10=10 | | -2x+1=3x-14 | | 7x-4x=5x+6 | | N/3-8=7n/12+6 | | X=180-2x33 | | b/108=34 | | 9y-15=13 |