If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=196
We move all terms to the left:
4x^2-(196)=0
a = 4; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·4·(-196)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*4}=\frac{-56}{8} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*4}=\frac{56}{8} =7 $
| 9^x-2=-81 | | 7x=9-+6x | | 3(x-21)=x-17 | | 5(x+4)-3(x(2=32 | | 50-2x=x+5 | | 2x-18=x+1 | | (2x+7)(3x−12)=0 | | 7x-9=3x-11 | | 3x=4x-68 | | (2a+1)(a−4)=0 | | (2)^-2x=1/1024 | | 2x*x=28 | | Y=-10/3x+7 | | 2+8x=17x2+8x=17x | | 18x+35x+9=62x | | 100x+10=10 | | -2x+1=3x-14 | | 7x-4x=5x+6 | | N/3-8=7n/12+6 | | X=180-2x33 | | b/108=34 | | 9y-15=13 | | 0,5*3*x=9 | | 9x-5+2-3=39 | | X-5+x-5+x+x=34 | | 5a+a+60+2a+140=360 | | (2x-1)(x+3)+(2x-1)(x-1)=0 | | 3(3w+1)/2=-9 | | 6x=20-0.8 | | 4x3 | | (16/2r)=(16/3r+1) | | 2x3+3x2+-8x+3=0 |