(17/2)p=10

Simple and best practice solution for (17/2)p=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (17/2)p=10 equation:



(17/2)p=10
We move all terms to the left:
(17/2)p-(10)=0
Domain of the equation: 2)p!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
(+17/2)p-10=0
We multiply parentheses
17p^2-10=0
a = 17; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·17·(-10)
Δ = 680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{680}=\sqrt{4*170}=\sqrt{4}*\sqrt{170}=2\sqrt{170}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{170}}{2*17}=\frac{0-2\sqrt{170}}{34} =-\frac{2\sqrt{170}}{34} =-\frac{\sqrt{170}}{17} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{170}}{2*17}=\frac{0+2\sqrt{170}}{34} =\frac{2\sqrt{170}}{34} =\frac{\sqrt{170}}{17} $

See similar equations:

| 2m^2+6m+4.5=0 | | 5z2=3z | | 10(s-7)=172 | | Y=3x2+5x-1 | | 4x-3x=2+1 | | .20x=3 | | 19-0.3x=x | | 7x²+33x-10=0 | | 5x+(7x-40)=180 | | -7x-(2/5)x=0 | | x+2x+2x+x=100 | | 0.5x+5=10 | | -2-x=5x-6-7 | | -2x-3=6x-4 | | 56+4y=8 | | 4-7n=-(8n+ | | 7y+14=8y+6 | | x-5=2(x+1)-3(4x-5) | | 3x+7=-21+7x | | 1,50+4,50t=96 | | -19x-30=-19x-38 | | 3+6x=5x+13 | | 2,50+3,50t=51,50 | | -130x-6=-6x-130 | | -6x-6=130x-130 | | 1+7x+7x=1 | | 130x-6=130x-130 | | -6x-6=-6x-130 | | 3-6x=2x-21 | | 8.5(f+2)=8.3f+9 | | 6x-20=24+4 | | 2x-x=9-4x |

Equations solver categories