If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/4)x+(5/10)x=200
We move all terms to the left:
(1/4)x+(5/10)x-(200)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 10)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/4)x+(+5/10)x-200=0
We multiply parentheses
x^2+5x^2-200=0
We add all the numbers together, and all the variables
6x^2-200=0
a = 6; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·6·(-200)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*6}=\frac{0-40\sqrt{3}}{12} =-\frac{40\sqrt{3}}{12} =-\frac{10\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*6}=\frac{0+40\sqrt{3}}{12} =\frac{40\sqrt{3}}{12} =\frac{10\sqrt{3}}{3} $
| 3(4n+8)=13+n | | -3w+-7=-10 | | 95/60x=15 | | 3/7y=-15 | | 35x^2+28x+17=17 | | 10x-15=2/3 | | 8x-24.5=x | | 9x+7=8x+6 | | 150-x-2x+120=2x | | 9x+7=8x-6 | | 2(c-3)=8 | | 12d-8=8d+12 | | s+s/5+2/3=5/6 | | 4-(x+2)=5x-22 | | s+5/s+2/3=5/6 | | 3x-2x+5=2(x-1)-x+7 | | 4(3a-2)=8a+12 | | x/1/2=3 | | 2x-5=2(3+x) | | 8.2(6x-3)=8(7x-1.2) | | -3(k-15)=9 | | -3x+8x-4+5x=16 | | 11v−v−6v=16 | | 2(7x-6)+10x=36 | | v/8=20.48 | | -12v+-v=13 | | 13=4(n-18)-9 | | 0.9x+0.5x-0.6x=240 | | -4+-2n=-6 | | 3(x+5)-7x(x-2)=2x(6x+4) | | 2(-4x+7)+4x=8x+26 | | 2(-4+7)+4x=8x+26 |