3(x+5)-7x(x-2)=2x(6x+4)

Simple and best practice solution for 3(x+5)-7x(x-2)=2x(6x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+5)-7x(x-2)=2x(6x+4) equation:



3(x+5)-7x(x-2)=2x(6x+4)
We move all terms to the left:
3(x+5)-7x(x-2)-(2x(6x+4))=0
We multiply parentheses
-7x^2+3x+14x-(2x(6x+4))+15=0
We calculate terms in parentheses: -(2x(6x+4)), so:
2x(6x+4)
We multiply parentheses
12x^2+8x
Back to the equation:
-(12x^2+8x)
We add all the numbers together, and all the variables
-7x^2+17x-(12x^2+8x)+15=0
We get rid of parentheses
-7x^2-12x^2+17x-8x+15=0
We add all the numbers together, and all the variables
-19x^2+9x+15=0
a = -19; b = 9; c = +15;
Δ = b2-4ac
Δ = 92-4·(-19)·15
Δ = 1221
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{1221}}{2*-19}=\frac{-9-\sqrt{1221}}{-38} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{1221}}{2*-19}=\frac{-9+\sqrt{1221}}{-38} $

See similar equations:

| 2(-4x+7)+4x=8x+26 | | 2(-4+7)+4x=8x+26 | | 3=3(j-7)-9 | | 4(3D-2)=8d+12 | | F(x)=5÷4 | | (1/2x-1)+(3/5x-1)=(1/6x-2) | | 2(u-3)=6 | | 0.3(5x-7)-0.2(3x+4)=x | | 8/x-3=6/x+4 | | 11=k/2+8 | | 4*x=80.8 | | 3x+5x+8x=160 | | (p​2​​+p−6)(p​2​​−6)=0 | | 2(m-9)+-12=0 | | 2^3x-4=7 | | 2x+7(x-8)=7(4+x))+8x | | -11s+50+8s=-44 | | t6+5=9 | | 1+8/y=5/3 | | (12x-1)=(8x+12) | | -4+3t=-10 | | -4+3t=10 | | (8x+12)=(12x-2) | | 4-6a+4a=2-5(6-2a) | | 0.75x-6=0.5x+1 | | (6x–2)/9+(3x+5)/18=1/3 | | -4(3/2x-1/2)=(-15) | | x+32=6 | | 2x/x+6-3/x+6=3/2 | | (6x-1)=(4x-6) | | 10w=100,000 | | y/11−2=4 |

Equations solver categories