(1/37*x)+(1/22*x)=3

Simple and best practice solution for (1/37*x)+(1/22*x)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/37*x)+(1/22*x)=3 equation:



(1/37x)+(1/22x)=3
We move all terms to the left:
(1/37x)+(1/22x)-(3)=0
Domain of the equation: 37x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 22x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/37x)+(+1/22x)-3=0
We get rid of parentheses
1/37x+1/22x-3=0
We calculate fractions
22x/814x^2+37x/814x^2-3=0
We multiply all the terms by the denominator
22x+37x-3*814x^2=0
We add all the numbers together, and all the variables
59x-3*814x^2=0
Wy multiply elements
-2442x^2+59x=0
a = -2442; b = 59; c = 0;
Δ = b2-4ac
Δ = 592-4·(-2442)·0
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3481}=59$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-59}{2*-2442}=\frac{-118}{-4884} =59/2442 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+59}{2*-2442}=\frac{0}{-4884} =0 $

See similar equations:

| 2x2-4x-30=0 | | 3x/4-3/8=5x/6+1/4 | | D^2-2d+1=14 | | 9x-6=9+6x | | -81=-15+-2f | | 3a2=a+6 | | 2x-4x-30=0 | | 2x+9+3x+x=x+ | | 9x+72=4x=112 | | 9x+72=4x=122 | | -43=-x/7 | | 7x-59+4x=2-7x+11 | | 2.30+57000=15y | | 4u=-32 | | x3=30.3 | | 2.30x+57000=15x | | a^-2+16a^-1+64=0 | | 9x^2=15x+4=0 | | 3(15-6x)= 21 -6x | | y–13=–3 | | 5-h=37.5 | | 25n^2+30n=0 | | 2x2-18=643 | | 9c+c-5c=20 | | 10g+g+2g+2g-8g=7 | | 18a-9a+2a-9a=4 | | 18a–9a+2a–9a=4 | | 20r-19r+r=16 | | 20r–19r+r=16 | | v+9−16=20 | | 2j-j=13 | | 8s-6s=14 |

Equations solver categories