2x2-18=643

Simple and best practice solution for 2x2-18=643 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x2-18=643 equation:



2x^2-18=643
We move all terms to the left:
2x^2-18-(643)=0
We add all the numbers together, and all the variables
2x^2-661=0
a = 2; b = 0; c = -661;
Δ = b2-4ac
Δ = 02-4·2·(-661)
Δ = 5288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5288}=\sqrt{4*1322}=\sqrt{4}*\sqrt{1322}=2\sqrt{1322}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1322}}{2*2}=\frac{0-2\sqrt{1322}}{4} =-\frac{2\sqrt{1322}}{4} =-\frac{\sqrt{1322}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1322}}{2*2}=\frac{0+2\sqrt{1322}}{4} =\frac{2\sqrt{1322}}{4} =\frac{\sqrt{1322}}{2} $

See similar equations:

| 9c+c-5c=20 | | 10g+g+2g+2g-8g=7 | | 18a-9a+2a-9a=4 | | 18a–9a+2a–9a=4 | | 20r-19r+r=16 | | 20r–19r+r=16 | | v+9−16=20 | | 2j-j=13 | | 8s-6s=14 | | 4.2(5-2x)=1.2(3x-5 | | 12n-5n=14 | | 13•(-1)+2y=1 | | 9j-4j=20 | | 9j=4j=20 | | 2x-2x-6=30 | | x/100=14/56 | | 3w+6=12 | | 4/3(-9x+12)-x=-13x+-16 | | 6x=1x+18 | | 20=v+9−16 | | 6x=1×+18 | | 4/3(-9x+12)-x=-13x+-5 | | 2j–10=2 | | 4/3(-9x+12)-x=-13x+5 | | 9x-7=x+1 | | 4+3x=50 | | (x-6)/3=(x+4)/4 | | 4/3(-9x+12)-x=13x+16 | | 178/5y+1=0 | | 7x-2x+12=2(x-2)+6 | | 2x=2(8−x) | | 7/5+5m/6=77/30 |

Equations solver categories