If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x-30=0
a = 2; b = -4; c = -30;
Δ = b2-4ac
Δ = -42-4·2·(-30)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-16}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+16}{2*2}=\frac{20}{4} =5 $
| 3x/4-3/8=5x/6+1/4 | | D^2-2d+1=14 | | 9x-6=9+6x | | -81=-15+-2f | | 3a2=a+6 | | 2x-4x-30=0 | | 2x+9+3x+x=x+ | | 9x+72=4x=112 | | 9x+72=4x=122 | | -43=-x/7 | | 7x-59+4x=2-7x+11 | | 2.30+57000=15y | | 4u=-32 | | x3=30.3 | | 2.30x+57000=15x | | a^-2+16a^-1+64=0 | | 9x^2=15x+4=0 | | 3(15-6x)= 21 -6x | | y–13=–3 | | 5-h=37.5 | | 25n^2+30n=0 | | 2x2-18=643 | | 9c+c-5c=20 | | 10g+g+2g+2g-8g=7 | | 18a-9a+2a-9a=4 | | 18a–9a+2a–9a=4 | | 20r-19r+r=16 | | 20r–19r+r=16 | | v+9−16=20 | | 2j-j=13 | | 8s-6s=14 | | 4.2(5-2x)=1.2(3x-5 |