(1/3)x+(1/2)x=5

Simple and best practice solution for (1/3)x+(1/2)x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/3)x+(1/2)x=5 equation:



(1/3)x+(1/2)x=5
We move all terms to the left:
(1/3)x+(1/2)x-(5)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/3)x+(+1/2)x-5=0
We multiply parentheses
x^2+x^2-5=0
We add all the numbers together, and all the variables
2x^2-5=0
a = 2; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·2·(-5)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*2}=\frac{0-2\sqrt{10}}{4} =-\frac{2\sqrt{10}}{4} =-\frac{\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*2}=\frac{0+2\sqrt{10}}{4} =\frac{2\sqrt{10}}{4} =\frac{\sqrt{10}}{2} $

See similar equations:

| 9+6b=–15+4b | | 17.5x4-5+115=180 | | 4(y+3)=-2(8y-5)+2y | | 5000+1500+45x=4500+55x | | 9=3(s+18) | | -1x+1=-4x=13 | | 2x+4x-12-6=42 | | -2(-2+5x)-5=-61 | | 17x+5=175 | | -2(d+10)=-6 | | -4=2(s-10)+-8 | | 28=-w/2 | | (x=4)=3 | | 3-2/5y=5 | | |x+5|=7.5 | | 3(5x-26)=2(x+65) | | 7x+13=4x+9 | | -1x+1=4x+13 | | 1/8n+1=-25 | | 2(a-4)=4a-1(2a-8) | | 4g+3​(-4+2​g)=1-g | | 3(6n+1)=93 | | -15k=-17k+16 | | 6f=39 | | 3x+1=4x-6=2x-8 | | –8+7x=6x | | F(x)=5x-52 | | 19=3(b+4)+1 | | X+x+3006=7854 | | 4x–2x–20x+x=x | | 3(y-2)-6y=-27 | | X/a+3=19 |

Equations solver categories