If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2x+2)+1/2x+x+4x=122
We move all terms to the left:
(1/2x+2)+1/2x+x+4x-(122)=0
Domain of the equation: 2x+2)!=0
x∈R
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
5x+(1/2x+2)+1/2x-122=0
We get rid of parentheses
5x+1/2x+1/2x+2-122=0
We multiply all the terms by the denominator
5x*2x+2*2x-122*2x+1+1=0
We add all the numbers together, and all the variables
5x*2x+2*2x-122*2x+2=0
Wy multiply elements
10x^2+4x-244x+2=0
We add all the numbers together, and all the variables
10x^2-240x+2=0
a = 10; b = -240; c = +2;
Δ = b2-4ac
Δ = -2402-4·10·2
Δ = 57520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{57520}=\sqrt{16*3595}=\sqrt{16}*\sqrt{3595}=4\sqrt{3595}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-4\sqrt{3595}}{2*10}=\frac{240-4\sqrt{3595}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+4\sqrt{3595}}{2*10}=\frac{240+4\sqrt{3595}}{20} $
| x+3=15+2x+3x | | 3(x-2)=4x+3x+12 | | x0.3=0.09 | | 4(x-12)+5x=9x-48 | | -3+3*x=18 | | 7+3x=-21 | | -2f+9-3f=27 | | 8=8v=4(v+8) | | 3x+38=6x+8 | | x/5x+7=9x-17 | | 8x=2(x+21 | | 80=x(3x+1) | | -3a-12=-96+4a | | 43+x=94 | | -40=5(1-6r)+3(r-4) | | 21=-7+9(h+2) | | 44+2z=6z | | 55+x=220 | | -10-4y=6y | | 10w+12=16+8w | | 1.1=m-4 | | 8x-1=8x+1 | | 6v-7v=22 | | 24=7q-6q+16 | | 8v+18=2v | | -24=2(c-12)+8c | | 3(3x+4)=9x-6 | | 6x-3=8x-10 | | w/4+5=1 | | 20x/16x=1 | | x/4-10=8 | | 60k+90=50k |