(1/2.x)+x=180

Simple and best practice solution for (1/2.x)+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2.x)+x=180 equation:



(1/2.x)+x=180
We move all terms to the left:
(1/2.x)+x-(180)=0
Domain of the equation: 2.x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+1/2.x)+x-180=0
We add all the numbers together, and all the variables
x+(+1/2.x)-180=0
We get rid of parentheses
x+1/2.x-180=0
We multiply all the terms by the denominator
x*2.x-180*2.x+1=0
Wy multiply elements
2x^2-360x+1=0
a = 2; b = -360; c = +1;
Δ = b2-4ac
Δ = -3602-4·2·1
Δ = 129592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{129592}=\sqrt{4*32398}=\sqrt{4}*\sqrt{32398}=2\sqrt{32398}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-2\sqrt{32398}}{2*2}=\frac{360-2\sqrt{32398}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+2\sqrt{32398}}{2*2}=\frac{360+2\sqrt{32398}}{4} $

See similar equations:

| 17x-3=13+15x | | 80+20x+30=180 | | 4x+3=3x+75 | | 5(2x*1)=50 | | 3x+7-2x=3+x-4 | | 92=4(j+10) | | 35=-7(4y+3) | | -5(5-6x)-(1-x)=2(x-4) | | 7x-2=7+4x | | 2p+3(8-5p)=11 | | 9/26=x/24 | | 40=0.30m | | 7x-19x=8 | | –(w+27)=–40 | | 7-7y=49 | | 1.2(x+3)=2(x-3) | | 18=7x+3-3x | | 4(w+2)=64 | | –(w−–27)=–40 | | 6x=−I | | 5y-3=2y+10 | | 6x=− | | 5-r/5=-3 | | 98=8v+2 | | 15-4y-17y=-20y-4 | | 9(x+8)=10 | | 3.50(x)+2(x)=120 | | -4(x-8)+9=41 | | 4(3y+12)+5y=-3 | | 15-4y-17y=20y-4 | | 3x-9+3x=19-9+10 | | 4(3x+7)=-49+53 |

Equations solver categories