If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)(4d-2)=d+5
We move all terms to the left:
(1/2)(4d-2)-(d+5)=0
Domain of the equation: 2)(4d-2)!=0We add all the numbers together, and all the variables
d∈R
(+1/2)(4d-2)-(d+5)=0
We get rid of parentheses
(+1/2)(4d-2)-d-5=0
We multiply parentheses ..
(+4d^2+1/2*-2)-d-5=0
We multiply all the terms by the denominator
(+4d^2+1-d*2*-2)-5*2*-2)=0
We add all the numbers together, and all the variables
(+4d^2+1-d*2*-2)=0
We get rid of parentheses
4d^2-d*2*+1-2=0
We add all the numbers together, and all the variables
4d^2-d*2*-1=0
Wy multiply elements
4d^2-2d^2-1=0
We add all the numbers together, and all the variables
2d^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $
| (x-4)+3x=3-(2x+3(x-5)) | | 216=3x×2x | | 10+10+c=-10-5c | | 6c+2=99 | | 4x2+5x-9=7x+7-2x | | -7j=-8j-6 | | 6(x+-2)=3x-6 | | 3+6t=9+7t | | 3*(-2x+4)=-3x+4 | | 2/5k+1/10k=1/2k-1 | | -7+9s=-2+10s | | 8^x=17 | | 3(a+4)=5a | | 8z=9z+7 | | 5x+8-4x=x-12 | | 3x+4/2=4 | | 8(p-3)-(6-2p)=2(p+2)-5(5-p) | | −5(2x−15)=2(x-2)−41 | | −5(2x−15)=2(x−2)−41 | | 1/2(x-16)=18+7x | | 21=9t+3 | | 6.8+2y=-2.2 | | n^2-10n-39=-7 | | (3x+1)^2=100 | | 8n–6=–9n+11 | | u(u-5)+8u=u(u+2)-2 | | 72=8w+w | | 8n–6=–9n+11 | | 2z/9-7=8 | | 63=11w-2w | | 5a+19=-1 | | -1.7w-4=2.68 |