(1/2)(3x+3)=3x

Simple and best practice solution for (1/2)(3x+3)=3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(3x+3)=3x equation:



(1/2)(3x+3)=3x
We move all terms to the left:
(1/2)(3x+3)-(3x)=0
Domain of the equation: 2)(3x+3)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(3x+3)-3x=0
We add all the numbers together, and all the variables
-3x+(+1/2)(3x+3)=0
We multiply parentheses ..
(+3x^2+1/2*3)-3x=0
We multiply all the terms by the denominator
(+3x^2+1-3x*2*3)=0
We get rid of parentheses
3x^2-3x*2*3+1=0
Wy multiply elements
3x^2-18x*3+1=0
Wy multiply elements
3x^2-54x+1=0
a = 3; b = -54; c = +1;
Δ = b2-4ac
Δ = -542-4·3·1
Δ = 2904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2904}=\sqrt{484*6}=\sqrt{484}*\sqrt{6}=22\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-22\sqrt{6}}{2*3}=\frac{54-22\sqrt{6}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+22\sqrt{6}}{2*3}=\frac{54+22\sqrt{6}}{6} $

See similar equations:

| 6m/4=7 | | (11+3x)^2=-11 | | -3=n-10/3 | | m+6/4=7 | | -3(k-2)=18 | | 4x+8=2x+140 | | 12=5x+3(x-3) | | (1/2)(4x+4)=6x | | 5(x-2)=36-4x | | 7(c-12)=18 | | 5-(x+4)=-1=2x | | 5-2x-12=13 | | 6(2x-6)=24-10x | | X=44x+7= | | 26-3y-12=0 | | 22-a=37 | | 2x/(0.05-x)=7.70 | | -9h-10=35 | | 2x/0.05-x=7.70 | | X+4x-9+5x=180 | | t^2+5t+3=0 | | 3.5x-10=3x | | -4a+5(-6a+5)=-27-8a | | 1.2x7.5=8.5 | | 6k-13=14k+5 | | A(n)=2n-10 | | 6(8x-8)+7=103 | | 29-4x=6x+5 | | 8(b-3)=-2(b+7) | | 3(x-4)=2(-2×+1) | | 72+54+x=180 | | 92+54+x=180 |

Equations solver categories