(1/2)(4x+4)=6x

Simple and best practice solution for (1/2)(4x+4)=6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/2)(4x+4)=6x equation:



(1/2)(4x+4)=6x
We move all terms to the left:
(1/2)(4x+4)-(6x)=0
Domain of the equation: 2)(4x+4)!=0
x∈R
We add all the numbers together, and all the variables
(+1/2)(4x+4)-6x=0
We add all the numbers together, and all the variables
-6x+(+1/2)(4x+4)=0
We multiply parentheses ..
(+4x^2+1/2*4)-6x=0
We multiply all the terms by the denominator
(+4x^2+1-6x*2*4)=0
We get rid of parentheses
4x^2-6x*2*4+1=0
Wy multiply elements
4x^2-48x*4+1=0
Wy multiply elements
4x^2-192x+1=0
a = 4; b = -192; c = +1;
Δ = b2-4ac
Δ = -1922-4·4·1
Δ = 36848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36848}=\sqrt{784*47}=\sqrt{784}*\sqrt{47}=28\sqrt{47}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-28\sqrt{47}}{2*4}=\frac{192-28\sqrt{47}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+28\sqrt{47}}{2*4}=\frac{192+28\sqrt{47}}{8} $

See similar equations:

| 5(x-2)=36-4x | | 7(c-12)=18 | | 5-(x+4)=-1=2x | | 5-2x-12=13 | | 6(2x-6)=24-10x | | X=44x+7= | | 26-3y-12=0 | | 22-a=37 | | 2x/(0.05-x)=7.70 | | -9h-10=35 | | 2x/0.05-x=7.70 | | X+4x-9+5x=180 | | t^2+5t+3=0 | | 3.5x-10=3x | | -4a+5(-6a+5)=-27-8a | | 1.2x7.5=8.5 | | 6k-13=14k+5 | | A(n)=2n-10 | | 6(8x-8)+7=103 | | 29-4x=6x+5 | | 8(b-3)=-2(b+7) | | 3(x-4)=2(-2×+1) | | 72+54+x=180 | | 92+54+x=180 | | 89+43+x=180 | | 7v+6v=0 | | 4x−2x=−6 | | 3(x+2)—14=16 | | 1d+23=14(d−2) | | 3x+7+50+90=180 | | x+89+48+48=180 | | |1+3x|=x+5 |

Equations solver categories