(1)/(3)x+10=(3)/(5)x

Simple and best practice solution for (1)/(3)x+10=(3)/(5)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(3)x+10=(3)/(5)x equation:



(1)/(3)x+10=(3)/(5)x
We move all terms to the left:
(1)/(3)x+10-((3)/(5)x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(+3/5x)+10=0
We get rid of parentheses
1/3x-3/5x+10=0
We calculate fractions
5x/15x^2+(-9x)/15x^2+10=0
We multiply all the terms by the denominator
5x+(-9x)+10*15x^2=0
Wy multiply elements
150x^2+5x+(-9x)=0
We get rid of parentheses
150x^2+5x-9x=0
We add all the numbers together, and all the variables
150x^2-4x=0
a = 150; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·150·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*150}=\frac{0}{300} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*150}=\frac{8}{300} =2/75 $

See similar equations:

| 66=45+0.25m | | 8x+3+7x+102=180 | | 15t-10=t+2 | | 3.6g+7=1.6g+11 | | (20+x)(50+x)=2275 | | (8p-17)+38+(4p-33)=180 | | 20+2.2x=86 | | 6a+3=63 | | 12.5−4g=−2g−3.5 | | 6r-7=35 | | –2(x+6)=-15 | | 2u+4=22 | | (4x+2)=20x-9x+2 | | p-3×1÷6=-2×1÷2 | | 14+12v=-15+9v | | .75n=18 | | 5b+12=1/2(10b+24) | | 5–2(x+6)=-15 | | 7x-2x-4+15=11+x+36 | | 1/4h=4 | | 5x=4(x-6)=-11 | | 4c=4c+8 | | 5j-6=14 | | 2j+8=26 | | 6m-2=-1 | | (2r3=89 | | 8y-43+68=180 | | 2x+6=(5x+9)/2 | | 2.63+2.7t=–2.65+1.9t | | 3r+–8=–17 | | 5+7n=96 | | –6n=–5n+6 |

Equations solver categories