((4x+1)(x+1))/(x-5)=0

Simple and best practice solution for ((4x+1)(x+1))/(x-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((4x+1)(x+1))/(x-5)=0 equation:



((4x+1)(x+1))/(x-5)=0
Domain of the equation: (x-5)!=0
We move all terms containing x to the left, all other terms to the right
x!=5
x∈R
We multiply parentheses ..
((+4x^2+4x+x+1))/(x-5)=0
We multiply all the terms by the denominator
((+4x^2+4x+x+1))=0
We calculate terms in parentheses: +((+4x^2+4x+x+1)), so:
(+4x^2+4x+x+1)
We get rid of parentheses
4x^2+4x+x+1
We add all the numbers together, and all the variables
4x^2+5x+1
Back to the equation:
+(4x^2+5x+1)
We get rid of parentheses
4x^2+5x+1=0
a = 4; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·4·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3}{2*4}=\frac{-8}{8} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3}{2*4}=\frac{-2}{8} =-1/4 $

See similar equations:

| (x+1)^2=4(x^2-2x+1) | | 0=3p(p-9) | | 0=-49t^2+147t | | (1/4x+3/4)1/2=1 | | 96+80t-16t^2=96 | | 80+64t-16t^2=80 | | (8x-8)(9x+9)=0 | | 16x^2=−20x | | 120=15x^2-5 | | (2x+1)(3x-5)+1=4x^2 | | (7/18)x+(5/11)x+31,000=X | | 6x-17°+11=90 | | 18m(m+4/9)-16=118 | | 96+80t-16t^2=t | | 2(3x+2)=2x-x | | Y×y×y×y×y=32 | | 11900-20y+20y=119000 | | 7x-12x-5=-4+15 | | 10(119000-20y/10+20y=119000 | | 2x^2-5/3x=25/3 | | 4x(x-5)/5x-1,x=1/5 | | 61|2+n=12 | | 4x+6x=10.10 | | 3x2-1587=0 | | 4y-28=64+2y | | 2(x-3)=6x-5 | | 5y+6=3y+54 | | 10=2(.5x+5) | | 5y-16=-1 | | b+-3=9 | | x+9/18=5/9+x-3/5 | | 3x/4-27/9=13/4 |

Equations solver categories