18m(m+4/9)-16=118

Simple and best practice solution for 18m(m+4/9)-16=118 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18m(m+4/9)-16=118 equation:



18m(m+4/9)-16=118
We move all terms to the left:
18m(m+4/9)-16-(118)=0
We add all the numbers together, and all the variables
18m(+m+4/9)-16-118=0
We add all the numbers together, and all the variables
18m(+m+4/9)-134=0
We multiply parentheses
18m^2+72m^2-134=0
We add all the numbers together, and all the variables
90m^2-134=0
a = 90; b = 0; c = -134;
Δ = b2-4ac
Δ = 02-4·90·(-134)
Δ = 48240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48240}=\sqrt{144*335}=\sqrt{144}*\sqrt{335}=12\sqrt{335}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{335}}{2*90}=\frac{0-12\sqrt{335}}{180} =-\frac{12\sqrt{335}}{180} =-\frac{\sqrt{335}}{15} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{335}}{2*90}=\frac{0+12\sqrt{335}}{180} =\frac{12\sqrt{335}}{180} =\frac{\sqrt{335}}{15} $

See similar equations:

| 96+80t-16t^2=t | | 2(3x+2)=2x-x | | Y×y×y×y×y=32 | | 11900-20y+20y=119000 | | 7x-12x-5=-4+15 | | 10(119000-20y/10+20y=119000 | | 2x^2-5/3x=25/3 | | 4x(x-5)/5x-1,x=1/5 | | 61|2+n=12 | | 4x+6x=10.10 | | 3x2-1587=0 | | 4y-28=64+2y | | 2(x-3)=6x-5 | | 5y+6=3y+54 | | 10=2(.5x+5) | | 5y-16=-1 | | b+-3=9 | | x+9/18=5/9+x-3/5 | | 3x/4-27/9=13/4 | | 5^3-2x=5-^x | | 3x+2(-3/2x)=-4 | | 7x-6=3(2x+4)-6 | | 2=-5(1)+b | | 2^2x+1=128 | | 6(3^(2-x))=30 | | 4/3x-25/7=12/3 | | 4(1+6n)+3n=-104 | | 4x+40+3x+122=180 | | 2(3x-4)=48 | | 81=3^2x | | 4x+40+3x+133=180 | | 8y-26=62+6y |

Equations solver categories