((2x-3)(x+5))/2=240

Simple and best practice solution for ((2x-3)(x+5))/2=240 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((2x-3)(x+5))/2=240 equation:



((2x-3)(x+5))/2=240
We move all terms to the left:
((2x-3)(x+5))/2-(240)=0
We multiply parentheses ..
((+2x^2+10x-3x-15))/2-240=0
We multiply all the terms by the denominator
((+2x^2+10x-3x-15))-240*2=0
We calculate terms in parentheses: +((+2x^2+10x-3x-15)), so:
(+2x^2+10x-3x-15)
We get rid of parentheses
2x^2+10x-3x-15
We add all the numbers together, and all the variables
2x^2+7x-15
Back to the equation:
+(2x^2+7x-15)
We add all the numbers together, and all the variables
(2x^2+7x-15)-480=0
We get rid of parentheses
2x^2+7x-15-480=0
We add all the numbers together, and all the variables
2x^2+7x-495=0
a = 2; b = 7; c = -495;
Δ = b2-4ac
Δ = 72-4·2·(-495)
Δ = 4009
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{4009}}{2*2}=\frac{-7-\sqrt{4009}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{4009}}{2*2}=\frac{-7+\sqrt{4009}}{4} $

See similar equations:

| 2x+10=-8x | | -18m=-13-19m | | 14(14x)=x | | 4(m-10)=8(m+1)+12 | | 5x+4 = 39 | | 2(v+1)-18=2(v+1) | | 14j-15=13j | | -7(2u+13)=-12u-17 | | 55=-5(3r+3)+r | | -3x-6 = 39 | | 12x+12=14x-14 | | 15÷c=675 | | 3.5/12=x/360x= | | (a-3)/(2)=(a+6)/(3) | | 9+b=9+16b | | 2-7x=-5x-6 | | y+2/3=1/3 | | 4j=2j-8 | | 3a-10=5a+4 | | 16x+6=26x+6 | | 4(2n+5)=9(7n+3)+8 | | -v-4=6+v | | -2u=-u-2 | | 4(2n-2)=4 | | (X+10)=(3x+28) | | 7=-2m+7-6 | | j+8-5+14-17=25 | | (X+10)=(3c | | -10a-2+4a=4 | | 1/7k-3=3/7+7 | | 3(6x-8)-6x=15 | | 0.3(x-3)+5=5.6 |

Equations solver categories