If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100a^2-59=0
a = 100; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·100·(-59)
Δ = 23600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23600}=\sqrt{400*59}=\sqrt{400}*\sqrt{59}=20\sqrt{59}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{59}}{2*100}=\frac{0-20\sqrt{59}}{200} =-\frac{20\sqrt{59}}{200} =-\frac{\sqrt{59}}{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{59}}{2*100}=\frac{0+20\sqrt{59}}{200} =\frac{20\sqrt{59}}{200} =\frac{\sqrt{59}}{10} $
| 8(-v-4)=96 | | X2-4y3=0 | | -1/2(3y-4)=22-6y | | 13+-3=x | | -25x+74=6(3x-2) | | 12x-4x-10=54 | | 1/5+5x=25 | | 2.4x+x+18+x+60+2x+1.3x=540 | | 12(x^2-8)=3x(4x+1) | | 8x^2-42x=-27 | | 9^2x=1/24^3 | | 1z=12 | | 22x+11=4x−7 | | X+12=6x+8 | | 52=2.07u+9.8*2.07^2/2 | | -4(2n-5)=49 | | 8(k+1)-2k=50 | | -32-n=8n+8(n-4) | | 3(2u-4)+6u=36 | | -4(8n-4)-2=-38-6n | | 48-90/x*2=18 | | 59=2.3u+9.8*2.3^2/2 | | 2r+2/4=12 | | 6+6(2x-1)=3(1+4x) | | (3z/10)-7=-5 | | -13+4p=5(3p-7) | | 59=1.6t+9.8t^2/2 | | 8v^2+9=-140 | | (x/9)+8=1 | | (z/7)-7=8 | | 45x=72/7 | | 18x+-30=42 |