If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2=24
We move all terms to the left:
z2-(24)=0
We add all the numbers together, and all the variables
z^2-24=0
a = 1; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·1·(-24)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*1}=\frac{0-4\sqrt{6}}{2} =-\frac{4\sqrt{6}}{2} =-2\sqrt{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*1}=\frac{0+4\sqrt{6}}{2} =\frac{4\sqrt{6}}{2} =2\sqrt{6} $
| 7(x-5)+3x=10(x+1)+11 | | 2^3x+1=4^17 | | -6x=-5x=2 | | 1.5p-14=1p+13 | | -2w-5(8w+9)=-5w+6+3w | | 3p-5=7(-8p+7)+5 | | 2x—5=3 | | -6x+-5x=2 | | 140+10w=90+20w | | -13-x=-33 | | x/3+99=36 | | 10-3a^=-2 | | 6x+73=9x+37 | | 50-5x=50-3.5x | | 8b-3b+2-b=2(2b+1) | | 5(3x-6)-3=5(x-2)+67 | | 4x-25=11x+3 | | 5/4x-1=1-5/4x | | -2x-12=-23 | | -7x^+21=14 | | 73=13+6q | | 7(x—3)=14 | | 2x+12/3=15 | | -5(4x-8)-10=-6x+30-14 | | -68=4(3x-5) | | x/12-12=48 | | -9w+6=-57 | | 66+90+30+x=180 | | (3x+1)*(x+6)=0 | | 3x−1= −2x+39−2x+39 | | 5(w−2)=−2(1.5w+5) | | 5+9y=–7–8y |