z2+4=5-z2

Simple and best practice solution for z2+4=5-z2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z2+4=5-z2 equation:



z2+4=5-z2
We move all terms to the left:
z2+4-(5-z2)=0
We add all the numbers together, and all the variables
-(-1z^2+5)+z2+4=0
We add all the numbers together, and all the variables
z^2-(-1z^2+5)+4=0
We get rid of parentheses
z^2+1z^2-5+4=0
We add all the numbers together, and all the variables
2z^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| 270-90d=360 | | 5x-4=3(4x+1) | | -3×5/3x=4 | | 0=23-14x-x^2 | | 2(x-1)+2(x+1)=6(x+3)-5(2-7x) | | 14.41+19.7u=-10.5u-9.75 | | -30=x+5 | | 500=10×t | | -16g–6g–-10g+18g=-18 | | 6(4p-2)-8=100 | | 3x-2=4x-8-x | | Y=x+12.5 | | 1/8x+2=5/6 | | r/4=r+7/10 | | -3(2x)=-6x-9 | | 10x+5=3x+47 | | 48(3)x=24 | | -6t=-18 | | 14x-38+57=100x+30 | | 8r+6r=-34 | | 8s-6=2(s+11)(2) | | 2n-3n-5n+1=43 | | 27.3=4/3y | | 5y+5=360 | | 11=j/5 | | -5.5m-14.96=-4.7m | | x+10=+9 | | G-(4+2g)-8g=8+3g | | -4/7(x+7)=8 | | 6x=(2x+3) | | -12+2d=d | | 2a-a-10=-13 |

Equations solver categories