If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+23z=0
We add all the numbers together, and all the variables
z^2+23z=0
a = 1; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·1·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*1}=\frac{-46}{2} =-23 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*1}=\frac{0}{2} =0 $
| -88=-4+3(8-6x) | | 5x+7=2x-22 | | 3m+2=m+24 | | -9.5x+0.77=-3.03 | | 6x-2=-3x+106 | | 1/3(2x-6)=12 | | 3x+2x-7+12=38 | | -18=2n+4 | | 6f-5=2f+11 | | 7(b-2)=3b+14 | | n12×7=49 | | 90=5(5n-7) | | 47=−3n+8 | | 3(5e-2)=39 | | 6(c-17)=-42 | | 2x+45=7x-35 | | -3/4p+1/8=9/10 | | 2a/9=13/17 | | -7-5(2x-3)=88- | | 8d-5=-21 | | 4x-7=-19+x | | P=5(2t-20 | | -19=k+32 | | (3x+1)(2x-2)=64x= | | 4x-7=-18+x | | z/8+7=-44 | | k/2+3=21 | | x/14=38/56 | | 60=4x+2(x+3) | | .6x-10=1.4x | | 9x+13+20=180 | | 6d+4=16 |