If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z2+16=20
We move all terms to the left:
z2+16-(20)=0
We add all the numbers together, and all the variables
z^2-4=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $
| -48=q/3-40 | | 2x(4-2+x)-8x+4(4)=16 | | 7y+32y=9 | | z.7=7 | | 51-v=174 | | m+39=44 | | 128+40+82=x | | n4+ 7=10 | | 9h-12=17 | | 9h-12=17* | | 3x+34x(5x+8x)+x(2)=24 | | x+128+40=82 | | -8(w+5)=40 | | 7f+9=58 | | 52+6y=17 | | 5x-1+12x-6=90 | | -9=-3+a | | 21+k=29 | | 3+6b+6b=15 | | 8x-90=50 | | 82+x+128=40 | | 3(11x)=3(47x) | | 2(3x+1)=5x+3x+9 | | 0=13x^2-84x+36 | | -48=-6.9a-16 | | 2x(5-3+x)-3x+4(5)=83 | | 100+5x=63+2x | | n/6+14=26 | | 40+x+82=128 | | 1/2y+3/4y+1=111/4 | | (2u-10)+(2u-15)+(2u+7)+2u=510 | | 25-2r=79 |