y2=97294

Simple and best practice solution for y2=97294 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y2=97294 equation:



y2=97294
We move all terms to the left:
y2-(97294)=0
We add all the numbers together, and all the variables
y^2-97294=0
a = 1; b = 0; c = -97294;
Δ = b2-4ac
Δ = 02-4·1·(-97294)
Δ = 389176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{389176}=\sqrt{4*97294}=\sqrt{4}*\sqrt{97294}=2\sqrt{97294}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{97294}}{2*1}=\frac{0-2\sqrt{97294}}{2} =-\frac{2\sqrt{97294}}{2} =-\sqrt{97294} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{97294}}{2*1}=\frac{0+2\sqrt{97294}}{2} =\frac{2\sqrt{97294}}{2} =\sqrt{97294} $

See similar equations:

| (3x)(3x)=6x | | 15x-56+8x+23=132 | | −89·12=c | | 12000/6=6y2/6 | | 9c^2-14=30 | | 414=68q | | 5(x+2/5)=-3 | | c.−89·12=c | | 9k^2-32k=0 | | 3+7n+2n=24 | | 8+5u=28 | | 15=-7x+22 | | 2y=6(-8)+56 | | -9-9(5+2v)=0 | | -4(3-2)=-6(2s-1)-2 | | 8z+-4(-2z+-5)=-8z-100 | | (3x+9)(4x-10)=0 | | (3x+)(4x-10)=0 | | 10x+58+260-16x+90=360 | | 3x+4(7+-1)=22 | | 10x+58+260-16+90=360 | | (8+u)(4u-7)=0 | | 12400=13600(4x) | | j2=–11 | | 6(10^3x)=25 | | 2y-6=8-y | | 128+52+4+(x-15)=180 | | 128+52+4+(x-5)=180 | | 2+1.25f=10-2.57f | | -8t-23=23 | | 6y=55.8 | | r+17.9=56.4 |

Equations solver categories