If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12000/6=6y^2/6
We move all terms to the left:
12000/6-(6y^2/6)=0
We add all the numbers together, and all the variables
-(6y^2/6)+2000=0
We get rid of parentheses
-6y^2/6+2000=0
We multiply all the terms by the denominator
-6y^2+2000*6=0
We add all the numbers together, and all the variables
-6y^2+12000=0
a = -6; b = 0; c = +12000;
Δ = b2-4ac
Δ = 02-4·(-6)·12000
Δ = 288000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288000}=\sqrt{57600*5}=\sqrt{57600}*\sqrt{5}=240\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240\sqrt{5}}{2*-6}=\frac{0-240\sqrt{5}}{-12} =-\frac{240\sqrt{5}}{-12} =-\frac{20\sqrt{5}}{-1} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240\sqrt{5}}{2*-6}=\frac{0+240\sqrt{5}}{-12} =\frac{240\sqrt{5}}{-12} =\frac{20\sqrt{5}}{-1} $
| 9c^2-14=30 | | 414=68q | | 5(x+2/5)=-3 | | c.−89·12=c | | 9k^2-32k=0 | | 3+7n+2n=24 | | 8+5u=28 | | 15=-7x+22 | | 2y=6(-8)+56 | | -9-9(5+2v)=0 | | -4(3-2)=-6(2s-1)-2 | | 8z+-4(-2z+-5)=-8z-100 | | (3x+9)(4x-10)=0 | | (3x+)(4x-10)=0 | | 10x+58+260-16x+90=360 | | 3x+4(7+-1)=22 | | 10x+58+260-16+90=360 | | (8+u)(4u-7)=0 | | 12400=13600(4x) | | j2=–11 | | 6(10^3x)=25 | | 2y-6=8-y | | 128+52+4+(x-15)=180 | | 128+52+4+(x-5)=180 | | 2+1.25f=10-2.57f | | -8t-23=23 | | 6y=55.8 | | r+17.9=56.4 | | 10+3(x-5)=-3(x+1) | | x-75.3=42.8 | | 8b=48. | | -3a+4=a-8 |